查看原文
其他

中科院纳米能源所李舟研究员团队《Adv. Mater.》:在-80℃下具有超级可拉伸、快速自愈能力的离子水凝胶用于人工神经纤维

老酒高分子 高分子科技 2022-09-30
点击上方“蓝字” 一键订阅


摔碎的手机屏幕能否像受伤的皮肤一样在短时间内恢复如初呢?自愈合材料的提出和蓬勃发展使其成为可能。基于自愈合材料的柔性电子器件在人造皮肤,软体机器人和制动器等领域获得了广泛关注。因为他们不仅具有类似生物系统的顺应性,且在受到意外损伤时能够很快恢复其形态和功能,从而大大提高了器件的使用寿命,使用安全性和经济效益。然而,大部分自愈合材料的性能受到温度影响,在低温下变硬,变脆,甚至完全失效,使其应用止步于高纬度和严寒地区。


针对这一问题,北京纳米能源与系统研究所李舟研究员团队通过利用Li+的高水合能调节水凝胶材料在低温下的高分子链扩散能力和动态相互作用,制备了一种在超低温环境(-80℃)下具有稳定自愈合性能的多功能离子水凝胶(SSIH)。通过系统优化,该离子水凝胶可实现在受损后10分钟内的快速自愈合、愈合后的材料可承受超过7000%以上的大变形,11.76 S/cm的稳定电导率和长达到13个月的综合性能稳定性。特别是,即使在-80℃的极端低温环境下,这些实用性能也能很好地保持,这为目前水凝胶基的自愈材料在零摄氏度下由于水分和聚合物链段冻结而失效的问题提供了可行的解决方案。


在这项工作中,李舟研究员团队通过仿生有髓轴突的结构和信号传输功能,展示了一种基于 SSIH 的人工神经纤维 (SSANF),用于实现高保真和高通量的信息交互。将该人工神经纤维集成到多功能机器人时,SSANF展示了它在实时集成信号传递中的用途。克服了传统金属导线无法拉伸和易拉断的缺陷,SSANF在反复大变形下可保持稳定的传输性能,这使全柔性集成系统成为可能。基于该多功能离子水凝胶的仿生器件将使仿生智能机器人更接近模拟复杂的生物系统,为机器人在极端条件下完成无人任务开辟更广阔的应用场景。


 

图 1. SSIH的设计原理。(a) SSIH的设计过程以及自愈能力和超拉伸性的原理。(b) SSIH 中的动态相互作用。(c) 随着LiCl的增加,SSIH的抗冻能力和柔韧性更好。(d,e) 随着 LiCl 含量的增加,SSIH 的断裂伸长率增加到原始长度的约 70 倍,抗拉强度呈下降趋势,电导率呈现增长趋势。



图 2. SSIH 的自愈性能。(a) SSIH的自愈机制。(b) 用光学显微镜观察受损SSIHs的自愈过程,5min受损部位完全愈合,10min受损部位完全小时。(c) 两片不同时间制备的 SSIH 的自愈性能。(d) SSIH在原始状态和不同愈合时间后(RT)的拉伸应力-应变曲线。插图是愈合5min后拉伸状态下的愈合部位照片。(e) SSIHs在原始状态愈合30 min (不同低温)后的拉伸应力-应变曲线。

 


 3. SSIH 的导电性能。 (a~c) SSIH在30℃到-80℃/10的EIS图。(d) SSIH 的电阻随着温度的降低而增加。(e) SSIH的导电性表现出长时间稳定性,在-80℃空气中放置13个月后,电阻刚刚增加到440.9 ohm/cm。(f) SSIH在-68℃导电自愈能力。 (g~h) 随着温度的降低,阻抗和相位角的平稳平台扩大并移至较低频率区域


 


图4. SSANF 的设计原理和信息传输能力。(a) SSANF 的设计原则。(i)有髓轴突结构的图。神经信号以动作电位的形式沿着有髓轴突传播。(ii) SSANF 结构图。电容模型中的电位信号传递过程。(c) |V1/V0| 随电压脉冲的频率和幅度而变化,并保持在 0.975 和 1.025 之间。在 100%、200% 和 300% 变形 (d) 下,输出端口 (e) 中记录的电压曲线。 (f) 在10000次拉伸至200%变形和恢复过程中,信号保持其初始形状和幅度。

 


图5.SSANF 在仿生智能机器人中的应用。(a)SSAF作为 BIR 的一个通信单元。(b)同步仿生机器人手系统的电路示意图,(c)其中 SSANF 用于传输实时集成信号。(d)干冰(-78.5℃)用于创造局部低温环境。(e) SSANF在200%变形和-78.5℃下的输入和输出信号。(f)SSANF 的能量输送能力和快速回复能力 

相关研究成果以题为:“Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber”发表在最新一期Advanced Materials (IF: 30.8)上,王婵博士和硕士研究生刘莹为共同第一作者, 李舟研究员为通讯作者。


原文链接:https://doi.org/10.1002/adma.202105416 


相关进展

纳米能源所李舟团队ACS AMI:可充电电极材料改进的超薄可拉伸摩擦纳米发电机

纳米能源所李舟团队最新Small综述:自修复功能电子器件

中科院纳米能源所李舟团队和中南大学李宇晟合作《ACS Nano》:用于肌肉功能评估的可拉伸、自愈和、皮肤自粘附的主动式传感器

中科院纳米能源所李舟课题组和陈翔宇课题组《AFM》:基于摩擦纳米发电机和介电弹性体的可擦写盲文显示系统

中科院纳米能源所李舟研究员团队等:一种基于压电和摩擦电复合效应的柔性自成拱生物传感器

中科院纳米能源所李舟研究员课题组在导电水凝胶传感领域取得新进展

中科院纳米能源所李舟研究员、王中林院士团队和北航樊瑜波教授团队合作:仿电鳗可拉伸水下发电机及其应用研究获进展

中科院纳米能源所李舟研究员、王中林院士团队和第二军医大学张浩教授团队合作:无需电池自驱动心脏起搏器问世

中科院纳米能源所李舟研究员课题组和深圳大学周学昌副教授课题组合作:聚吡咯-铜金属海绵用于能量转换和存储的一体化器件

中科院纳米能源所李舟研究员与过程工程所魏炜研究员合作:纳米发电机控制的药物精准递送系统实现高效的肿瘤治疗

中科院纳米能源所李舟研究员、王中林院士团队和北航樊瑜波教授团队合作:可降解植入电子医疗器件的能量源—全可吸收电容器

中科院纳米能源所李舟研究员、李琳琳研究员与王中林院士团队:光热可控降解纳米发电机用于组织修复

中科院北京纳米能源所李舟研究员和王中林院士团队AM:基于天然材料的生物全可吸收摩擦纳米发电机 

高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn

诚邀投稿

欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。

欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。

申请入群,请先加审核微信号PolymerChina (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。

这里“阅读原文”,查看更多


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存